a2 United States Patent

US009304813B2

(10) Patent No.: US 9,304,813 B2

Vembu et al. (45) Date of Patent: Apr. 5, 2016
(54) CPUINDEPENDENT GRAPHICS (56) References Cited
SCHEDULER FOR PERFORMING
SCHEDULING OPERATIONS FOR U.S. PATENT DOCUMENTS
GRAPHICS HARDWARE
2009/0160867 Al 6/2009 Grossman
75) Inventors: Balaji Vembu, Folsom, CA (US); 2011/0050713 Al 3/2011 MecCrary et al.
(75 AditJya Navale, Folsom, CA((US)); 2011/0210976 Al 9/2011 Diard
Murali Ramadoss, Folsom, CA (US);
David L. Standring, Mather, CA (US); FOREIGN PATENT DOCUMENTS
Kritika Bala, Folsom, CA (US) WO 2011-134942 Al 11/2011
WO 2014/014628 Al 1/2014
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Interr.lati(.)nal Search Report and Written Qpinion received for PCT
patent is extended or adjusted under 35 Application No. PCT/US2013/047638, mailed on Aug. 30,2013, 11
U.S.C. 154(b) by 594 days. pages.
(21) Appl. No.: 13/552,122 Primary Examiner — Meng An
Assistant Examiner — Bing Zhao
(22) Filed: Jul. 18, 2012 (74) Attorney, Agent, or Firm — International 1P Law
Group, PL.L.C.
(65) Prior Publication Data
US 2014/0026137 A1 Jan. 23, 2014 (57) ABSTRACT
A computing device for performing scheduling operations for
(51) Int.CL graphics hardware is described herein. The computing device
GOGF 9/46 (2006.01) includes a central processing unit (CPU) that is configured to
GO6F 15/16 (2006.01) execute an application. The computing device also includes a
GOGF 7/38 (2006.01) graphics scheduler configured to operate independently of the
GO6F 9/48 (2006.01) CPU. The graphics scheduler is configured to receive work
(52) US.CL queues relating to workloads from the application that are to
CPC ..o GO6F 9/4881 (2013.01); YO2B 60/144 execute on the CPU and perform scheduling operations for
(2013.01) any of a number of graphics engines based on the work
(58) Field of Classification Search queues.

None
See application file for complete search history.

15 Claims, 10 Drawing Sheets

100~
/»—’112
EREN [Crypographic | 234
i Verfication Block |
| DMA Engine l’ 2281 1 104
208 Memory
PR G etz =
FSB Addrass | | Message Channel Slorage
206 Interface | | Decader Interface ' -
T T Applications
3034 Al raphic Memory i
204 SRAN l l interface E g
13 hetrerinstrinriry
236 ~ 232 226~ 108"
kY
GT Doobedt PM Unit Graphios
Unit oMM Memory 116
216 . i 0 230 N ol T
- 220 238 21g 224
E Display B } Boot Graphics - 207
Engine ROM Engines
240
Display 222

Device

U.S. Patent Apr. 5, 2016 Sheet 1 of 10 US 9,304,813 B2

100 ~
102 =~ 118 ~
CPU Graphics Hardware
108~ .
104 ~ 12 0
Memary Graphics Scheduler
114 Graphics
Microcontroller
110~
Storage Graphics
108 Scheduling
Applications _;‘E *3;5,,,,@_// Scftware
H
i

M8~ shim

Layer

US 9,304,813 B2

Sheet 2 of 10

Apr. 5, 2016

U.S. Patent

¢ Ol

FHABL]
zee -4 Aedsig
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —Ove)
Soubug WO SUbUS
207 4 saydein wog Aeidsigy
81z~ , ozz
W«NN e LA y1¢] -
gLl -t 2 08T~ | BEC N A ke
Hlouieyy AINO) —— ok
galidein WU P geqiona 15
11
801 922287 - 967
. T " - BUIES
. y : fuowepy owdesg | | TVHES -
suogesddy
EREnE 2POsa | avepeny Ewm% e
BOEITE puueys abessayy | | ssaippy agy ||| CHPBUOI0I
~ 7 y - SRS
511 | |12 [owponoyidnaen | Ny
: a0z A 10EBaiB0y sl S
Atouapy e
<551 | |lgzz A B3 VIC oLz
néo o5 TOTEn gl
A ondesBodhin e G
zoL -) "o i
4% S
001

¥0E
90c

US 9,304,813 B2

Sheet 3 of 10

Apr. 5, 2016

U.S. Patent

- ggie Wsam 74
o38le T 5 .\zmmwm
P Qs A KAV 19PUSH N-weiz
o 80 g0 52 HMogic 201
A . 7 f) T A 3 {
~01€ Loie Lote
- GOE
" k3 .{.\ ¥ k3 0 \\&WQN
90e . 50 VS
glotiel i Vi 3)
IRIETEAY ja o s
T iebaibby IBGRUNOBISHN
ez POE ~ - wnuey (PEEY sowdaig
suifuz Aedsiy . Alouey
S g vZZ] sowdein
07z 7 408 3 %
e 917~ YU fequog 15
2
108~
s Ndd one -~
\-z01
oneandd
401~ uoneoddy

U.S. Patent

Apr. 5, 2016 Sheet 4 of 10

US 9,304,813 B2

Receive Work Queuss from Application
at Graphics Scheduler

- 402

¥

Determine Runiis! Including Number of
Work Queues for Each Graphics Engine

404

¥

Submit Each Runlist to Corresponding
Graphics Engine, Wherein Graphics
Engine is Configured o Execute Work
Cuieues within Runlist

e ‘Q{}ﬁ

¥

Receive Message Indicating Whether
Work Queues within Runlist have Been
Successiully Completed from Each
Corresponding Graphics Engine

L~ 408

¥

Forward Messages io Application
andfor CPU

~410

U.S. Patent

Apr. 5,2016 Sheet 5 of 10 US 9,304,813 B2
~ 500
Addrass
Graphics 502
MMIO
LApic | o0
MMIO
506~ o 510
GVA GT Memory Intarface
— 232 ¥ 7
SRAM L~ 508
HPA
~ 240
BoolROM

U.S. Patent Apr. 5, 2016 Sheet 6 of 10 US 9,304,813 B2
808 ﬂ{:@@
State
£
504 ~ Normal
Completion
} 4 814
602 - Submitted Ready ‘

Siate '

608

~

Waiton

FlipfFault

: .f;
~ Wall Slate
{ Flip, Fault]

Flip Donel 612
Fault Fuifilled

610

Fault Fulfiliment
Eror

U.S. Patent Apr. 5, 2016 Sheet 7 of 10 US 9,304,813 B2

Recaive Work Queuss Relatingto §~702
Workicads from Application
Perform Scheduling Operationg for - {704
Graphics Engines Based on Work Queuss

g
Lt
A0

]
2

i
2
w

U.S. Patent Apr. 5, 2016 Sheet 8 of 10 US 9,304,813 B2

800 ™~

J_“NSGE
Processor) 3o

Graphics Scheduling 806
Madule

804 ’
Interrupt Control L—~~—808
Module

U.S. Patent Apr. 5, 2016 Sheet 9 of 10 US 9,304,813 B2

904
gt
Display
s [2e
210 \\
@ User inferface
{ < { Select}
Q02 ~ <5 {* Anterna 908~
920~ 918 Contant Delivery
Memory) R\ci' Storage | | Device(s) ’
Device | NAGo Device | | '
916~
- Applications) Q086
Chipset : ; <
212~ P N s mo ﬂw\.)
108 Content Services
Procesanr | Graphics Devica(s)
f Subsystem
914" 202

U.S. Patent Apr. 5, 2016 Sheet 10 of 10 US 9,304,813 B2

8 “
100 N\f |
ffﬁaﬂd
- 1002
D 010
> ‘
O
<
o - 1008
1000

US 9,304,813 B2

1
CPU INDEPENDENT GRAPHICS
SCHEDULER FOR PERFORMING
SCHEDULING OPERATIONS FOR
GRAPHICS HARDWARE

TECHNICAL FIELD

The present invention relates generally to performing
scheduling operations for graphics engines. More specifi-
cally, the present invention relates to performing scheduling
operations for graphics engines of a computing device inde-
pendently of the central processing unit (CPU) via a graphics
scheduler.

BACKGROUND ART

The graphics subsystem hardware in a computing device
typically includes several independent graphics engines.
Software known as a graphics scheduler may be used to
schedule the graphics engines to execute the graphics work-
loads that execute on the hardware. However, according to
current techniques, the graphics scheduler is executed by the
central processing unit (CPU) of the computing device.
Executing the graphics scheduler on the CPU may impose
significant latency overheads due to communication delays
between the graphics engines and the CPU, which commu-
nicate via interrupts and memory-mapped input/output
(MMIO) based programming. In addition, such communica-
tions between the CPU and the graphics engines may result in
a large amount of power consumption, since the CPU may be
forced to intermittently switch from a low power state to a
high power state in order to perform scheduling operations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computing device that may
be used in accordance with embodiments;

FIG. 2 is a block diagram of the computing device includ-
ing internal components of a graphics subsystem of the com-
puting device;

FIG. 3 is a block diagram showing the functioning of the
graphics scheduler of the computing device;

FIG. 4 is a process flow diagram showing a method for
scheduling and executing work queues;

FIG. 5 is a block diagram of an exemplary address space
that may be used in accordance with embodiments;

FIG. 6 is a flow diagram showing a number of possible
states for a workload;

FIG. 7 is a process flow diagram showing a method for
performing scheduling operations for graphics hardware;

FIG. 8 is a block diagram showing a tangible, non-transi-
tory computer-readable medium that stores code for perform-
ing scheduling operations for graphics hardware;

FIG. 9 is a block diagram of an exemplary system for
implementing a graphics subsystem; and

FIG. 10 is a schematic of a small form factor device in
which the system of FIG. 9 may be embodied.

The same numbers are used throughout the disclosure and
the figures to reference like components and features. Num-
bers in the 100 series refer to features originally found in FI1G.
1; numbers in the 200 series refer to features originally found
in FIG. 2; and so on.

DESCRIPTION OF THE EMBODIMENTS

As discussed above, embodiments described herein relate
to performing scheduling operations for graphics engines of a

10

15

20

25

30

35

40

45

50

55

60

65

2

computing device independently of the central processing
unit (CPU) via a graphics scheduler. The graphics scheduler
may include a graphics microcontroller that is capable of
performing scheduling operations based on workloads
received from one or more applications executing on the CPU
of'the computing device. For example, the graphics scheduler
may dynamically determine an appropriate graphics engine
for executing each particular workload. In addition, the
graphics scheduler may determine an order in which to
execute the workloads for each graphics engine. Then, the
graphics scheduler may forward the workloads, as well as the
order of execution for the workloads, to the appropriate
graphics engines for execution. In various embodiments, the
graphics scheduler performs such scheduling operations with
little input from the CPU of the computing device.

In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives, may
be used. It should be understood that these terms are not
intended as synonyms for each other. Rather, in particular
embodiments, “connected” may be used to indicate that two
or more elements are in direct physical or electrical contact
with each other. “Coupled” may mean that two or more ele-
ments are in direct physical or electrical contact. However,
“coupled” may also mean that two or more elements are notin
direct contact with each other, but yet still co-operate or
interact with each other.

Some embodiments may be implemented in one or a com-
bination of hardware, firmware, and software. Some embodi-
ments may also be implemented as instructions stored on a
machine-readable medium, which may be read and executed
by a computing platform to perform the operations described
herein. A machine-readable medium may include any mecha-
nism for storing or transmitting information in a form read-
able by a machine, e.g., a computer. For example, a machine-
readable medium may include read only memory (ROM);
random access memory (RAM); magnetic disk storage
media; optical storage media; flash memory devices; or elec-
trical, optical, acoustical or other form of propagated signals,
e.g., carrier waves, infrared signals, digital signals, or the
interfaces that transmit and/or receive signals, among others.

An embodiment is an implementation or example. Refer-
ence in the specification to “an embodiment,” “one embodi-
ment,” “some embodiments,” ‘“various embodiments,” or
“other embodiments” means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiments is included in at least some embodiments, but
not necessarily all embodiments, of the inventions. The vari-
ous appearances “an embodiment,” “one embodiment,” or
“some embodiments” are not necessarily all referring to the
same embodiments.

Not all components, features, structures, characteristics,
etc. described and illustrated herein need be included in a
particular embodiment or embodiments. If the specification
states a component, feature, structure, or characteristic
“may”, “might”, “can” or “could” be included, for example,
that particular component, feature, structure, or characteristic
is not required to be included. If the specification or claim
refers to “a” or “an” element, that does not mean there is only
one of the element. If the specification or claims refer to “an
additional” element, that does not preclude there being more
than one of the additional element.

It is to be noted that, although some embodiments have
been described in reference to particular implementations,
other implementations are possible according to some
embodiments. Additionally, the arrangement and/or order of
circuit elements or other features illustrated in the drawings
and/or described herein need not be arranged in the particular

2 <

US 9,304,813 B2

3

way illustrated and described. Many other arrangements are
possible according to some embodiments.

In each system shown in a figure, the elements in some
cases may each have a same reference number or a different
reference number to suggest that the elements represented
could be different and/or similar. However, an element may
be flexible enough to have different implementations and
work with some or all of the systems shown or described
herein. The various elements shown in the figures may be the
same or different. Which one is referred to as a first element
and which is called a second element is arbitrary.

FIG. 1 is a block diagram of a computing device 100 that
may be used in accordance with embodiments. The comput-
ing device 100 may be, for example, a laptop computer,
desktop computer, tablet computer, mobile device, or server,
among others. The computing device 100 may include a CPU
102 that is adapted to execute stored instructions, as well as a
memory device 104 that stores instructions that are execut-
able by the CPU 102. The CPU 102 may control and coordi-
nate the overall operation of the computing device 100. The
CPU 102 can be a single core processor, a multi-core proces-
sor, a computing cluster, or any number of other configura-
tions.

The memory device 104 may include a main memory of the
computing device 100. In addition, the memory device 104
can include any form of random access memory (RAM),
read-only memory (ROM), flash memory, or the like. For
example, the memory device 104 may be one or more banks
of memory chips or integrated circuits. The CPU 102 may
have direct access to the memory device 104 through a bus
106.

The instructions that are executed by the CPU 102 may be
used to execute any of a number of applications 108 residing
within a storage device 110 of the computing device 100. The
applications 108 may be any types of applications or pro-
grams having graphics, graphics objects, graphics images,
graphics frames, video, or the like, to be displayed to auser of
the computing device 100. The CPU 102 may be connected to
the storage device 110 through the bus 106. The storage
device 110 can include a hard drive, an optical drive, a thumb-
drive, an array of drives, or any combinations thereof.

The CPU 102 may also be linked through the bus 106 to a
graphics scheduler 112. The graphics scheduler 112 may be
configured to perform scheduling operations for the applica-
tions 108 executing on the CPU 102. The graphics scheduler
112 may include a graphics microcontroller 114. The graph-
ics microcontroller 114 may be configured to perform sched-
uling operations for graphics hardware 116.

In various embodiments, the graphics microcontroller 114
interfaces with the graphics hardware 116 via a shim layer
118. The shim layer 118 may be configured to intercept inter-
rupts and other messages from the graphics hardware 116 and
forward such interrupts and other messages to the graphics
microcontroller 114. This may allow for direct scheduling of
the tasks, or work queues, requested by the applications 108
with little input from the CPU 102. Thus, the delay and the
power consumption for scheduling the graphics tasks may be
lower than the delay and the power consumption associated
with previous techniques, which relied on scheduling algo-
rithms and decisions being executed on the CPU 102 for
scheduling graphics tasks.

In various embodiments, the graphics microcontroller 114
includes graphics scheduling software 115. The graphics
scheduling software 115 may be loaded into hardware of the
computing device 100 via a graphics driver (not shown)
shortly after the boot-up phase of the computing device 100.

10

15

20

25

30

35

40

45

50

55

60

65

4

The graphics driver may be included within a graphics sub-
system of the computing device 100, and may include system
software.

Itis to be understood that the block diagram of FIG. 1 is not
intended to indicate that the computing device 100 is to
include all of the components shown in FIG. 1. Further, the
computing device 100 may include any number of additional
components not shown in FIG. 1, depending on the specific
implementation.

FIG. 2 is a block diagram of the computing device 100
including internal components of a graphics subsystem 202
of the computing device 100. Like numbered items are as
described with respect to FIG. 1. In various embodiments, the
graphics subsystem 202 includes both the graphics scheduler
112 and the graphics hardware 116. As discussed above, the
graphics scheduler 112 may include the graphics microcon-
troller 114 for performing scheduling operations for the
graphics hardware 116, as well as the shim layer 118 that
serves as the interface between the graphics microcontroller
114 and the graphics hardware 116.

The graphics microcontroller 114 may be a general pur-
pose core residing within the graphics subsystem 202 of the
computing device 100, and may operate at frequencies that
are similar to the typical frequencies of the graphics sub-
system 202, e.g., up to around 1.4 gigahertz. In addition, the
graphics microcontroller 114 may include a cache 204. The
cache may be small, e.g., around 8 kilobytes, and may beused
to store data relating to work queues received from any of the
applications 108, as well as information relating to the sched-
uling operations for the graphics hardware 116.

The graphics microcontroller 114 may also include a local
advanced programmable interrupt controller (LAPIC) 206.
The LAPIC 206 may be used to handle interrupts from vari-
ous sources, such as the applications 108, the CPU 102, and
the graphics hardware 116. In various embodiments, the
interrupts are collected from the various sources and sent to
the LAPIC 206 via an interrupt aggregator 208 residing
within the shim layer 118.

The graphics microcontroller 114 may interface with the
shim layer 118 via a front side bus (FSB) interface 210. The
shim layer 118 may communicate with the rest of the graphics
subsystem 202 via a message channel interface 212. Data
may be transferred between the graphics microcontroller 114
and the applications 108 executing on the CPU 102 through
memory. In some embodiments, an address decoder 214 may
serve as a traffic router for the transfer of the data. Further, the
message channel interface 212 may be configured to handle
the transfer of messages, or notifications, between the graph-
ics microcontroller 114 and the rest of the graphics subsystem
202. For example, one of the applications 108 may write
commands and data to one or more memory locations within
the graphics subsystem 202 to request submission of work
queues to the graphics hardware. In response, a graphics
translation (GT) doorbell unit 216 included within the graph-
ics hardware 116 may monitor the altered memory locations
to detect arrival of new work queues, and send a message to
the graphics microcontroller 114 via the message channel
interface 212. The message may include information regard-
ing the cause of an interrupt. The graphics microcontroller
may then read the message queue to determine the details of
the graphics workload to be executed.

As shown in FIG. 2, the graphics hardware 116 includes a
number of graphics engines 218. Each ofthe graphics engines
218 may be configured to perform specific graphics tasks, or
to execute specific types of workloads. In addition, the graph-
ics hardware 116 may include a display engine 220 that is
configured to display data to a user of the computing device

US 9,304,813 B2

5

100 via a display device 222. The data that is displayed may
include, for example, data that is rendered by one or more of
the graphics engines 218. Further, the graphics engines 218
and the display engine 220 may be configured to send event
notifications about executing workloads to the graphics
microcontroller 114. For example, the display engine 220
may send notifications about typical synchronizing events,
e.g., flips or Vsyncs, to the graphics microcontroller 114. In
some embodiments, such event notifications are sent in the
form of interrupts, which indicate that a particular workload
or a particular hardware device is requesting attention.

The graphics hardware 116 may also include graphics
memory 224. In some embodiments, the graphics memory
224 is a portion of the main memory, e.g., the memory device
104, of the computing device 100 that is devoted to storing
graphics data. For example, the graphics memory 224 may
include data structures that are used for the scheduling pro-
cedure. The graphics scheduler 112 may access the graphics
memory 224 via a graphics memory interface 226 that resides
within the shim layer 118. The shim layer 118 may also
include a direct memory access (DMA) engine 228 that is
configured to allow certain components of the graphics sub-
system 202, such as the graphics microcontroller 114, to
efficiently access specific memory regions, such as the
memory device 104 or the graphics memory 224, indepen-
dently of the CPU 102.

The graphics hardware 116 may also include an input/
output memory management unit (IOMMU) 230. The
IOMMU 230 may be configured to translate a graphics virtual
memory address, e.g., a graphics virtual address (GVA)
included in an instruction or work queue from one of the
applications 108, to a physical memory address, e.g., a host
physical address (HPA). This may be accomplished, for
example, via a multi-level page table walk, wherein the num-
ber of levels included in the page table walk depends on the
size of the address space to be supported.

The code that is used to implement the scheduling proce-
dure described herein may be stored within static random
access memory (SRAM) 232 within the shim layer 118. The
code within the SRAM 232 may be used to direct the func-
tioning of the graphics microcontroller 114. In some embodi-
ments, the code is loaded into the SRAM 232 via the DMA
engine 228. In addition, the shim layer 118 may include a
standard cryptographic verification block 234 that is config-
ured to authenticate the code within the SRAM 232 before
execution to ensure that the code has not been modified.

In some embodiments, the graphics hardware 116 includes
apower management (PM) unit 236. The PM unit 236 may be
configured to monitor the activity of the graphics microcon-
troller 114. In some embodiments, the PM unit 236 may
power down the graphics device when all the graphics
engines 218 are idle. In addition, a timer 238 may be used to
keep track of scheduling timelines.

As discussed above, in some embodiments, the graphics
scheduler 112 is loaded into hardware of the computing
device 100 via a graphics driver (not shown) shortly after the
boot-up phase of the computing device 100. In such embodi-
ments, initialization code for the graphics scheduler 112 is
included within boot read-only memory (bootROM) 240.
Such initialization code may be used to verify the scheduling
code contained in the SRAM 232. For example, the schedul-
ing code may be copied into an isolated memory region and
verified using the initialization code before execution of the
scheduling procedure.

It is to be understood that the block diagram of FIG. 2 is not
intended to indicate that the computing device 100 is to
include all of the components shown in FIG. 2. Further, the

30

40

45

55

6

computing device 100 may include any number of additional
components not shown in FIG. 2, depending on the specific
implementation.

FIG. 3 is a block diagram showing the functioning of the
graphics scheduler 112 of the computing device 100. Like
numbered items are as described with respect to FIGS. 1 and
2. In various embodiments, an application 108 sends work
queues including a number of graphics workloads to the GT
doorbell unit 216, as indicated by arrow 300. The GT doorbell
unit 216 may then send information relating to the work
queues to the graphics scheduler 112. The information relat-
ing to the work queues may be utilized by the graphics sched-
uler 112 for the scheduling procedure. In addition, any of the
information relating to the work queues may be stored within
the SRAM 232 for future usage.

In various embodiments, the graphics scheduler 112 also
uses interrupts received from any of a number of sources to
perform the scheduling procedure. For example, interrupts
may be received from the CPU 102, as indicated by arrow
302, the display engine 220, as indicated by arrow 304, or any
of the graphics engines 218, as indicated by arrow 306. The
interrupts may include information relating to events that are
requesting attention. Such interrupts may be collected within
the interrupt aggregator 208. In some embodiments, the inter-
rupt aggregator 208 prioritizes the interrupts based on any
number of factors. This prioritization allows the graphics
scheduler 112 to assign higher priority to an interrupt
received from one of the graphics engines 218, which may
have completed a previous task and be ready to accept a next
task, than an interrupt received from the application 108. For
example, if the graphics scheduler 112 is reading the appli-
cation workload in memory, the graphics scheduler 112 may
be interrupted by a high priority interrupt indicating that a
graphics engine 218 is idle. This allows the graphics sched-
uler 112 to suspend the application workload processing,
submit a waiting workload to the graphics engine 218, and
then return to the application workload processing.

Further, interrupts may be sent to the CPU 102, e.g., the
host. In some embodiments, such interrupts are sent via the
display engine 220, as indicated by arrow 307. However, the
interrupts may also be sent to the CPU 102 independently of
the display engine 220. The interrupts may be sent to the CPU
102 in order to inform the graphics driver running on the CPU
102 about the state of the scheduling procedure, e.g., whether
the scheduling procedure has been successfully completed, is
pending, or has failed. The interrupts may also inform the
CPU 102 about the state of the each of the workloads within
the work queues, e.g., whether execution of the workload has
been successfully completed, is pending, or has failed.

According to embodiments disclosed herein, the graphics
scheduler 112 is used to schedule workloads for any of the
graphics engines 218 or the display engine 220, or any com-
binations thereof. For example, in response to input from the
graphics microcontroller 114, the graphics scheduler 112
may submit a runlist 308 to any of the graphics engines 218.
The runlist 308 may include specific workloads to be per-
formed by each of the graphics engines 218.

In some embodiments, each of the graphics engines 218
includes a command streamer 310 that is configured to point
to specific memory locations that include instructions/com-
mands relating to the workloads to be completed, and to fetch
the instructions/commands from the memory locations. For
example, the runlist 308 may include a number of workloads
that relate to specific memory locations, and the command
streamer 310 may include a runlist port register (not shown)
that includes the specific memory locations from which to
fetch commands based on the runlist 308. The graphics

US 9,304,813 B2

7

scheduler 112 may submit the runlist 308 by writing the
runlist 308 to the runlist port register of the corresponding
graphics engine.

Further, in various embodiments, each of the graphics
engines 218 is configured to perform specific workloads
relating to graphics tasks. For example, the render graphics
engine 218A may be configured to access graphics data
stored in the graphics memory 224, and render such graphics
data. In some embodiments, the render graphics engine 218A
includes a render data path that includes translation tables for
converting GVAs to HPAs. The MFX graphics engine 218B
may be configured to perform video decoding graphics tasks,
and the VE box graphics engine 218C may be configured to
perform video encoding graphics tasks. In addition, the WD
box graphics engine 218D may be configured to provide
wireless display functionalities, and the blitter graphics
engine 218E may be configured to provide block image trans-
fer functionalities.

According to embodiments described herein, once the run-
list 308 has been submitted to the graphics engines 218 and
processed by the corresponding command streamers 310, the
graphics engines 218 may execute their respective workloads.
In addition, interrupts may be generated to indicate that par-
ticular workloads have been successfully completed, or that
problems occurred during execution of particular workloads,
for example.

The display engine 220 may also communicate events to
the graphics scheduler 112 to enable scheduling new tasks on
the graphics engines 218. For example, the display engine
220 may perform a page flip for switching a page being
displayed by a display screen. The display engine 220 may be
configured to send a completion message, e.g., a “Flip Done”
message, to the graphics scheduler 112 upon completion of
the workload, as indicated by the arrow 304.

In various embodiments, the IOMMU 230 is configured to
translate a GVA to a HPA, as discussed above. In addition, the
IOMMU 230 may be used to access particular memory loca-
tions, or pages, requested by a workload. However, in some
embodiments, such an access to memory may fail because the
page table walker may find that the GVA does not have a valid
translation to HPA, or that the type of access attempted is not
allowed by the page table attributes, such as, for example, a
write access to a page that is marked read-only. This may
cause the [IOMMU 230 to generate a page-fault event to notify
an IOMMU driver (not shown) within the system software.
The IOMMU driver may then either fix the page table to allow
the access to proceed, e.g., page fault fulfilled, or indicate to
the IOMMU 230 that the page fault cannot be serviced. The
IOMMU may communicate the page fault fulfilled or not
fulfilled message to the graphics scheduler 112. The graphics
scheduler 112 may use such messages to determine possible
changes to the schedules for the graphics engines 218. For
example, the graphics scheduler may decide to pre-empt a
running task whose progress may be hindered by the page
fault and schedule a different task that can make better
progress on the graphics engine 218.

FIG. 4 is a process flow diagram showing a method for
scheduling and executing work queues. The graphics sched-
uler 112 discussed above with respect to FIGS. 1, 2, and 3
may be used to schedule the work queues, and the graphics
engines 218 may be used to execute the work queues.

The method begins at block 402, at which work queues are
received from an application at a graphics scheduler. The
application may be executing on the computing device in
which the graphics scheduler resides. The work queues may

20

35

40

45

50

55

8

include a number of workloads that are to be executed by
graphics engines that also reside within the computing
device.

At block 404, a runlist including a number of work queues
is determined for each graphics engine via the graphics
scheduler. The runlists may be determined according to the
types of work queues that can be executed by each graphics
engine. The runlists may specify the specific work queues that
are to be executed by each graphics engine, as well as the
proper order of execution for the work queues.

At block 406, the graphics scheduler submits each runlist
to the corresponding graphics engine, wherein the graphics
engine is configured to execute the work queues within the
runlist. In some embodiments, a graphics engine executes the
work queues immediately. In other embodiments, the graph-
ics engine waits until a specified time, or until execution of a
previous runlist is complete, to execute the work queues.

At block 408, a message indicating whether work queues
within the runlist have been successfully completed is
received from each corresponding graphics engine. The
graphics scheduler may use the messages to determine
whether the scheduling procedure has been successfully com-
pleted. For example, if work queues within any of the runlists
failed to execute, the graphics scheduler may reschedule the
work queues.

At block 410, the messages are forwarded to the applica-
tion that initiated the work queues and/or the CPU of the
computing device. In some embodiments, if a message indi-
cates that a work queue has been successfully completed, the
application and/or the CPU may access the result, or output,
of the work queue generated by the corresponding graphics
engine.

Itis to be understood that the process flow diagram of FI1G.
4 is not intended to indicate that the blocks of the method 400
are to be executed in any particular order, or that all of the
blocks are to be included in every case. Further, any number
of additional blocks not shown in FIG. 4 may be included
within the method 400, depending on the specific implemen-
tation.

FIG. 5 is a block diagram of an exemplary address space
500 that may be used in accordance with embodiments. Like
numbered items are as described with respect to FIGS. 1 and
2. The address space may include graphics memory-mapped
input/output (MMIO) 502 and LAPIC MMIO 504 that pro-
vide for input and output between various devices within the
graphics subsystem 202 and the CPU 102. The address space
500 also includes portions of the SRAM 232 and the
bootROM 240, such as, for example, the portions of the
SRAM 232 and the bootROM 240 that are referenced by the
particular workload to which the address space 400 relates.

The address space 500 may also include a graphics virtual
memory address, e.g., GVA 506, that relates to a particular
physical memory address, e.g., HPA 508, within physical
memory of the computing device 100, e.g., the memory
device 104 or the graphics memory 224.

In various embodiments, a graphics translation (GT)
memory interface 510 residing, for example, within the
IOMMU 230 may be used to convert the GVA 506 to the HPA
508. This may be performed in response to input from the
graphics microcontroller 114 regarding some action that is to
be performed. Once the HPA 508 has been obtained, the
specific data structures residing at the corresponding physical
memory address may be accessed.

The translation procedure may be performed via a multi-
level page table walk, wherein the number of levels included
in the page table walk depends on the size ofthe address space
to be supported. The page table walk may be based on, for

US 9,304,813 B2

9

example, a graphics translation table (GTT) or virtualization
technology for DMA devices (VtD), among others. The GTT
may be used to translate the GVA 506 to the HPA 508. In
addition, the GTT may be created by the graphics driver
during loading or execution of an application 108 within the
computing device 100.

FIG. 6 is a flow diagram 600 showing a number of possible
states for a workload. Like numbered items are as described
with respect to FIGS. 1 and 2. When the graphics scheduler
112 submits the workload to one of the graphics engines 218,
the workload enters a submitted state 602. Once the workload
enters the submitted state 602, normal completion of the
workload may be attempted. If an indication 604 of normal
completion of the workload is received, the workload enters a
completed state 606. The graphics engine 218 may then send
a notification to the graphics scheduler 112 or the application
108 that initiated the workload indicating that the workload
has been executed.

If the workload is not successfully completed on the first
attempt but, rather, encounters a notification 608 to wait for an
event before proceeding, the workload enters a wait state 610.
The event may be a notification that the display engine 220
has finished displaying the buffer, e.g., flip, or that a page fault
has occurred, for example. The workload may remain in the
wait state until an indication 612 that the flip has been com-
pleted or the fault has been fulfilled is received. Once the flip
has been completed or the fault has been fulfilled, the work-
load enters a ready state 614. From the ready state 614, the
workload may reenter the submitted state 602.

If an indication of an error 616 is received, the workload
may enter an error state 618. In addition, if an indication 620
of'an error, e.g., a fault fulfillment error, is received while the
workload is in the wait state 610, the workload may enter the
error state 618. In some embodiments, if the workload enters
the error state 618, the graphics scheduler 112 is notified of
the failure to execute the particular workload. The graphics
scheduler may then convey this to the application 108.

FIG. 7 is a process flow diagram showing a method 700 for
performing scheduling operations for graphics hardware. The
method 700 may be performed by the computing device 100
described above with respect to FIGS. 1, 2, and 3.

The method begins at block 702, at which work queues
relating to workloads from an application are received. The
work queues may be received from an application executing
on the CPU of the computing device. Each of the work queues
may include a number of workloads, wherein the workloads
relate to graphics tasks to be performed. Exemplary graphics
tasks include rendering graphics data to produce graphics
images or displaying graphics images to a user of the com-
puting device. Such graphics images may include pixel
images, encoded images, video images or frames, static
images, photo images, or animated images, among others.

At block 704, scheduling operations for graphics engines
are performed based on the work queues. In various embodi-
ments, the scheduling operations are performed via the graph-
ics scheduler independently of the CPU. Performing sched-
uling operations for the graphics engines may include
determining a graphics engine to execute each of the work-
loads, and determining an order of executing workloads for
each graphics engine. The order of executing workloads for
each graphics engine may be determined according to any
type of prioritization scheme. The graphics scheduler may
notify the graphics engines of the determined order of execut-
ing workloads by writing to a runlist port register within a
command streamer of each of the graphics engines.

In some embodiments, the graphics scheduler may access
physical memory spaces relating to any of the work queues by

25

40

45

65

10

translating graphics virtual memory addresses into corre-
sponding physical memory addresses. Accessing such physi-
cal memory spaces may aid in the scheduling procedure by
providing the graphics scheduler with more information
about each of the work queues. For example, the graphics
scheduler may determine the size and complexity of the
workloads within a particular work queue by analyzing the
content that relates to each of the workloads.

Interrupts relating to the scheduling operations may be
received from the CPU, the display engine, or any of the
graphics engines, or any combinations thereof. Such inter-
rupts may be collected within an interrupt aggregator of the
graphics scheduler. The interrupts may then be used by the
graphics scheduler to perform the scheduling operations.

Itis to be understood that the process flow diagram of FI1G.
7 is not intended to indicate that the blocks of the method 700
are to be executed in any particular order, or that all of the
blocks are to be included in every case. Further, any number
of'additional blocks may be included within the method 700,
depending on the specific implementation.

In some embodiments, the method 700 also includes noti-
fying the application upon successful completion of a work-
load by a corresponding graphics engine. When a graphics
engine completes a particular workload, the graphics engine
may notify the graphics scheduler that the workload has
entered the completed state via an internal messaging system.
The graphics scheduler may then notify the application or the
host, e.g., the CPU itself, that the workload has been success-
fully completed. Further, in some embodiments, the graphics
engine may notify the graphics scheduler if the workload has
entered a wait state or an error state. The graphics scheduler
may then notify the application or the host that the graphics
engine is not done completing the workload, or has failed to
complete the workload.

FIG. 8 is a block diagram showing a tangible, non-transi-
tory computer-readable medium 800 that stores code for per-
forming scheduling operations for graphics hardware. The
tangible, non-transitory computer-readable medium 800 may
be accessed by a processor 802 over a computer bus 804.
Furthermore, the tangible, non-transitory, computer-readable
medium 800 may include code configured to direct the pro-
cessor 802 to perform the methods described herein. The
various software components discussed herein may be stored
on the tangible, computer-readable medium 800, as indicated
in FIG. 8. For example, a graphics scheduling module 806
may be configured to perform scheduling operations for
graphics hardware. In addition, an interrupt control module
808 may be configured to analyze interrupts received from the
graphics hardware or the CPU, and respond to such interrupts.

FIG. 9 is a block diagram of an exemplary system 900 for
implementing the graphics subsystem 202. [ike numbered
items are as described with respect to FIGS. 1 and 2. In some
embodiments, the system 900 is a media system. In addition,
the system 900 may be incorporated into a personal computer
(PC), laptop computer, ultra-laptop computer, tablet, touch
pad, portable computer, handheld computer, palmtop com-
puter, personal digital assistant (PDA), cellular telephone,
combination cellular telephone/PDA, television, smart
device (e.g., smart phone, smart tablet or smart television),
mobile internet device (MID), messaging device, data com-
munication device, or the like.

In various embodiments, the system 900 comprises a plat-
form 902 coupled to a display 904. The platform 902 may
receive content from a content device, such as content ser-
vices device(s) 906 or content delivery device(s) 908, or other
similar content sources. A navigation controller 910 includ-
ing one or more navigation features may be used to interact

US 9,304,813 B2

11

with, for example, the platform 902 and/or the display 904.
Each of these components is described in more detail below.

The platform 902 may include any combination of a
chipset 912, a processor 914, amemory device 916, a storage
device 918, the graphics subsystem 202, applications 108,
and a radio 920. The chipset 912 may provide intercommu-
nication among the processor 914, the memory device 916,
the storage device 918, the graphics subsystem 202, the appli-
cations 108, and the radio 920. For example, the chipset 912
may include a storage adapter (not shown) capable of provid-
ing intercommunication with the storage device 918.

The processor 914 may be implemented as Complex
Instruction Set Computer (CISC) or Reduced Instruction Set
Computer (RISC) processors, x86 instruction set compatible
processors, multi-core, or any other microprocessor or central
processing unit (CPU). In some embodiments, the processor
914 includes dual-core processor(s), dual-core mobile pro-
cessor(s), or the like.

The memory device 916 may be implemented as a volatile
memory device such as, but not limited to, a Random Access
Memory (RAM), Dynamic Random Access Memory
(DRAM), or Static RAM (SRAM). The storage device 918
may be implemented as a non-volatile storage device such as,
but not limited to, a magnetic disk drive, optical disk drive,
tape drive, an internal storage device, an attached storage
device, flash memory, battery backed-up SDRAM (synchro-
nous DRAM), and/or a network accessible storage device. In
some embodiments, the storage device 918 includes technol-
ogy to increase the storage performance enhanced protection
for valuable digital media when multiple hard drives are
included, for example.

The graphics subsystem 202 may perform processing of
images such as still or video for display. The graphics sub-
system 202 may include a graphics processing unit (GPU) or
a visual processing unit (VPU), for example. An analog or
digital interface may be used to communicatively couple the
graphics subsystem 202 and the display 904. For example, the
interface may be any of a High-Definition Multimedia Inter-
face, DisplayPort, wireless HDMI, and/or wireless HD com-
pliant techniques. The graphics subsystem 202 may be inte-
grated into the processor 914 or the chipset 912. Alternatively,
the graphics subsystem 202 may be a stand-alone card com-
municatively coupled to the chipset 912.

The graphics and/or video processing techniques described
herein may be implemented in various hardware architec-
tures. For example, graphics and/or video functionality may
be integrated within the chipset 912. Alternatively, a discrete
graphics and/or video processor may be used. As still another
embodiment, the graphics and/or video functions may be
implemented by a general purpose processor, including a
multi-core processor. In a further embodiment, the functions
may be implemented in a consumer electronics device.

The radio 920 may include one or more radios capable of
transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net-
works. Exemplary wireless networks include wireless local
area networks (WLANs), wireless personal area networks
(WPANSs), wireless metropolitan area network (WMANS),
cellular networks, satellite networks, or the like. In commu-
nicating across such networks, the radio 920 may operate in
accordance with one or more applicable standards in any
version.

The display 904 may include any television type monitor or
display. For example, the display 904 may include a computer
display screen, touch screen display, video monitor, televi-
sion, or the like. The display 904 may be digital and/or analog.

40

45

12

In some embodiments, the display 904 is a holographic dis-
play. Also, the display 904 may be a transparent surface that
may receive a visual projection. Such projections may convey
various forms of information, images, objects, or the like. For
example, such projections may be a visual overlay for a
mobile augmented reality (MAR) application. Under the con-
trol of one or more applications 108, the platform 902 may
display a user interface 922 on the display 904.

The content services device(s) 906 may be hosted by any
national, international, or independent service and, thus, may
be accessible to the platform 902 via the Internet, for
example. The content services device(s) 906 may be coupled
to the platform 902 and/or to the display 904. The platform
902 and/or the content services device(s) 908 may be coupled
to a network 924 to communicate (e.g., send and/or receive)
media information to and from the network 924. The content
delivery device(s) 908 also may be coupled to the platform
902 and/or to the display 904.

The content services device(s) 906 may include a cable
television box, personal computer, network, telephone, or
Internet-enabled device capable of delivering digital informa-
tion. In addition, the content services device(s) 906 may
include any other similar devices capable of unidirectionally
or bidirectionally communicating content between content
providers and the platform 902 or the display 904, via the
network 924 or directly. It will be appreciated that the content
may be communicated unidirectionally and/or bidirection-
ally to and from any one of the components in the system 900
and a content provider via the network 924. Examples of
content may include any media information including, for
example, video, music, medical and gaming information, and
so forth.

The content services device(s) 906 may receive content
such as cable television programming including media infor-
mation, digital information, or other content. Examples of
content providers may include any cable or satellite television
or radio or Internet content providers, among others.

In some embodiments, the platform 902 receives control
signals from the navigation controller 910, which includes
one or more navigation features. The navigation features of
the navigation controller 910 may be used to interact with the
user interface 922, for example. The navigation controller
910 may be a pointing device that may be a computer hard-
ware component (specifically human interface device) that
allows a user to input spatial (e.g., continuous and multi-
dimensional) data into a computer. Many systems such as
graphical user interfaces (GUI), and televisions and monitors
allow the user to control and provide data to the computer or
television using physical gestures.

Movements of the navigation features of the navigation
controller 910 may be echoed on the display 904 by move-
ments of a pointer, cursor, focus ring, or other visual indica-
tors displayed on the display 904. For example, under the
control of the applications 108, the navigation features
located on the navigation controller 910 may be mapped to
virtual navigation features displayed on the user interface
922. In some embodiments, the navigation controller 910
may not be a separate component but, rather, may be inte-
grated into the platform 902 and/or the display 904.

The system 900 may include drivers (not shown) that
include technology to enable users to instantly turn on and off
the platform 902 with the touch of a button after initial boot-
up, when enabled, for example. Program logic may allow the
platform 902 to stream content to media adaptors or other
content services device(s) 906 or content delivery device(s)
908 when the platform is turned “off.” In addition, the chipset
912 may include hardware and/or software support for 5.1

US 9,304,813 B2

13

surround sound audio and/or high definition 7.1 surround
sound audio, for example. The drivers may include a graphics
driver for integrated graphics platforms. In some embodi-
ments, the graphics driver includes a peripheral component
interconnect express (PCle) graphics card.

In various embodiments, any one or more of the compo-
nents shown in the system 900 may be integrated. For
example, the platform 902 and the content services device(s)
906 may be integrated; the platform 902 and the content
delivery device(s) 908 may be integrated; or the platform 702,
the content services device(s) 906, and the content delivery
device(s) 908 may be integrated. In some embodiments, the
platform 902 and the display 904 are an integrated unit. The
display 904 and the content service device(s) 906 may be
integrated, or the display 904 and the content delivery
device(s) 908 may be integrated, for example.

The system 900 may be implemented as a wireless system
or a wired system. When implemented as a wireless system,
the system 900 may include components and interfaces suit-
able for communicating over a wireless shared media, such as
one or more antennas, transmitters, receivers, transceivers,
amplifiers, filters, control logic, and so forth. An example of
wireless shared media may include portions of a wireless
spectrum, such as the RF spectrum. When implemented as a
wired system, the system 900 may include components and
interfaces suitable for communicating over wired communi-
cations media, such as input/output (I/O) adapters, physical
connectors to connect the I/O adapter with a corresponding
wired communications medium, a network interface card
(NIC), disc controller, video controller, audio controller, or
the like. Examples of wired communications media may
include a wire, cable, metal leads, printed circuit board
(PCB), backplane, switch fabric, semiconductor material,
twisted-pair wire, co-axial cable, fiber optics, or the like.

The platform 902 may establish one or more logical or
physical channels to communicate information. The informa-
tion may include media information and control information.
Media information may refer to any data representing content
meant for a user. Examples of content may include, for
example, data from a voice conversation, videoconference,
streaming video, electronic mail (email) message, voice mail
message, alphanumeric symbols, graphics, image, video,
text, and the like. Data from a voice conversation may be, for
example, speech information, silence periods, background
noise, comfort noise, tones, and the like. Control information
may refer to any data representing commands, instructions or
control words meant for an automated system. For example,
control information may be used to route media information
through a system, or instruct a node to process the media
information in a predetermined manner. The embodiments,
however, are not limited to the elements or the context shown
or described in FIG. 9.

FIG. 10 is a schematic of a small form factor device 1000
in which the system 900 of FIG. 9 may be embodied. Like
numbered items are as described with respect to FIG. 9. In
some embodiments, for example, the device 1000 is imple-
mented as a mobile computing device having wireless capa-
bilities. A mobile computing device may refer to any device
having a processing system and a mobile power source or
supply, such as one or more batteries, for example.

As described above, examples of a mobile computing
device may include a personal computer (PC), laptop com-
puter, ultra-laptop computer, tablet, touch pad, portable com-
puter, handheld computer, palmtop computer, personal digi-
tal assistant (PDA), cellular telephone, combination cellular
telephone/PDA, television, smart device (e.g., smart phone,

10

15

20

25

30

35

40

45

50

55

60

65

14

smart tablet or smart television), mobile internet device
(MID), messaging device, data communication device, and
the like.

An example of a mobile computing device may also
include a computer that is arranged to be worn by a person,
such as a wrist computer, finger computer, ring computer,
eyeglass computer, belt-clip computer, arm-band computer,
shoe computer, clothing computer, or any other suitable type
of wearable computer. For example, the mobile computing
device may be implemented as a smart phone capable of
executing computer applications, as well as voice communi-
cations and/or data communications. Although some embodi-
ments may be described with a mobile computing device
implemented as a smart phone by way of example, it may be
appreciated that other embodiments may be implemented
using other wireless mobile computing devices as well.

As shown in FIG. 10, the device 1000 may include a hous-
ing 1002, a display 1004, an input/output (I/O) device 1006,
and an antenna 1008. The device 1000 may also include
navigation features 1010. The display 1004 may include any
suitable display unit for displaying information appropriate
for a mobile computing device. The /O device 1006 may
include any suitable I/O device for entering information into
amobile computing device. For example, the I/O device 1006
may include an alphanumeric keyboard, a numeric keypad, a
touch pad, input keys, buttons, switches, rocker switches,
microphones, speakers, a voice recognition device and soft-
ware, or the like. Information may also be entered into the
device 1000 by way of microphone. Such information may be
digitized by a voice recognition device.

Example 1

A computing device is described herein. The computing
device includes a central processing unit (CPU) that is con-
figured to execute an application and a graphics scheduler that
is configured to operate independently of the CPU. The
graphics scheduler is configured to receive work queues relat-
ing to workloads from the application that are to execute on
the CPU and perform scheduling operations for any of a
number of graphics engines based on the work queues.

The graphics scheduler may include a graphics microcon-
troller and a shim layer. The graphics microcontroller may
interface with the graphics engines via the shim layer. The
graphics scheduler may be configured to perform scheduling
operations for a graphics engine by writing to a runlist port
register of the graphics engine. In addition, each of the graph-
ics engines may be configured to execute specific types of
workloads.

The graphics scheduler may be configured to access physi-
cal memory spaces relating to any of the work queues. To
access the physical memory spaces relating to any of the work
queues, the graphics scheduler may be configured to translate
graphics virtual memory addresses into corresponding physi-
cal memory addresses via an input/output memory manage-
ment unit (IOMMU). The graphics scheduler may also be
configured to perform scheduling operations for a display
engine based on the work queues. In addition, the graphics
scheduler may be configured to collect interrupts from any of
the graphics engines, the CPU, or the display engine, or any
combinations thereof, via an interrupt aggregator, and use the
interrupts to perform the scheduling operations.

The computing device may include a radio, wherein the
radio is communicatively coupled to the CPU. The computing
device may also include a display, wherein the display is

US 9,304,813 B2

15

communicatively coupled to the CPU. In addition, the graph-
ics scheduler may be configured to operate independently of
a power state of the CPU.

Example 2

A method for performing scheduling operations for graph-
ics hardware is described herein. The method includes receiv-
ing, at a graphics scheduler of a computing device, work
queues relating to workloads from an application executing
on a central processing unit (CPU) of the computing device.
The method also includes performing scheduling operations
for any of a number of graphics engines based on the work
queues, wherein the scheduling operations are performed via
the graphics scheduler independently of the CPU.

Performing scheduling operations for a graphics engine
may include determining an order of executing workloads for
the graphics engine. Determining the order of executing
workloads for the graphics engine may include writing to a
runlist port register of the graphics engine.

In some embodiments, physical memory spaces relating to
any of the work queues may be accessed by translating graph-
ics virtual memory addresses into corresponding physical
memory addresses. In addition, in some embodiments, sched-
uling operations may be performed for a display engine.

Interrupts relating to the scheduling operations may be
received from the CPU, the display engine, or any of the
graphics engines, or any combinations thereof. The interrupts
may be used to perform the scheduling operations. In addi-
tion, in some embodiments, an application may be notified
upon successful completion of a workload by a correspond-
ing graphics engine.

Example 3

At least one non-transitory machine readable medium hav-
ing instructions stored therein is described herein. Inresponse
to being executed on a computing device, the instructions
cause the computing device to receive, at a graphics sched-
uler, work queues relating to workloads from an application
executing on a central processing unit (CPU). The instruc-
tions also cause the computing device to perform scheduling
operations for any of a number of graphics engines based on
the work queues, wherein the scheduling operations are per-
formed via the graphics scheduler independently of the CPU.

Performing the scheduling operations may include deter-
mining a graphics engine to execute each of a number of
workloads. In addition, performing the scheduling operations
for a graphics engine may include determining an order of
executing workloads for the graphics engine. Further, in some
embodiments, the instructions may cause the computing
device to notify the application upon successful completion
of'a workload by a corresponding graphics engine.

It is to be understood that specifics in the aforementioned
examples may be used anywhere in one or more embodi-
ments. For instance, all optional features of the computing
device described above may also be implemented with
respect to either of the methods or the computer-readable
medium described herein. Furthermore, although flow dia-
grams and/or state diagrams may have been used herein to
describe embodiments, the inventions are not limited to those
diagrams or to corresponding descriptions herein. For
example, flow need not move through each illustrated box or
state or in exactly the same order as illustrated and described
herein.

The inventions are not restricted to the particular details
listed herein. Indeed, those skilled in the art having the benefit

15

20

25

30

35

40

45

55

65

16

of this disclosure will appreciate that many other variations
from the foregoing description and drawings may be made
within the scope of the present inventions. Accordingly, it is
the following claims including any amendments thereto that
define the scope of the inventions.

What is claimed is:

1. A computing device, comprising:

a central processing unit (CPU) configured to execute an
application;

graphics hardware comprising graphics engines config-
ured to process graphics tasks received from the appli-
cation executing on the CPU;

a graphics scheduler to select one of the graphics engines to
execute each of a plurality of workloads, the graphics
scheduler comprising a graphics microcontroller and a
shim layer and configured to operate independently of
the CPU and the graphics hardware, the graphics sched-
uler to:

receive interrupts from the graphics hardware and the
CPU;

receive work queues comprising the graphics tasks from
the application; and

schedule the processing of the graphics tasks by the
selected graphics engine in response to the interrupts by
writing to a runlist port register of the graphics hard-
ware;

the shim layer to intercept interrupts from the graphics
hardware and the CPU and forward the interrupts to the
graphics microcontroller.

2. The computing device of claim 1, wherein the graphics
hardware comprises graphics engines configured to execute
specific types of workloads.

3. The computing device of claim 1, wherein the graphics
scheduler is configured to access physical memory spaces
relating to any of the work queues.

4. The computing device of claim 3, wherein, to access the
physical memory spaces relating to any of the work queues,
the graphics scheduler is configured to translate graphics
virtual memory addresses into corresponding physical
memory addresses via an input/output memory management
unit IOMMU).

5. The computing device of claim 1, wherein the graphics
scheduler is configured to perform scheduling operations for
a display engine based on the work queues.

6. The computing device of claim 1, comprising a radio,
wherein the radio is communicatively coupled to the CPU.

7. The computing device of claim 1, comprising a display,
wherein the display is communicatively coupled to the CPU.

8. The computing device of claim 1, wherein the graphics
scheduler is configured to operate independently of a power
state of the CPU.

9. A method for performing scheduling operations for
graphics hardware comprising graphics engines, the method
comprising:

receiving, at a graphics scheduler of a computing device,
work queues comprising graphics tasks from an appli-
cation executing on a central processing unit (CPU) of
the computing device;

receiving, at a shim layer of the graphics scheduler, inter-
rupts from the graphics hardware configured to process
the graphics tasks received from the application;

forwarding the interrupts from the shim layer to a graphics
microcontroller of the graphics scheduler;

scheduling the processing of the graphics tasks by a
selected one of the graphics engines in response to the
interrupts by writing to a runlist port register of the

US 9,304,813 B2

17

graphics hardware, wherein the scheduling is performed
via the graphics microcontroller independently of the
CPU.

10. The method of claim 9, wherein scheduling the pro-
cessing of the graphics tasks comprises determining an order
of executing workloads for the graphics hardware.

11. The method of claim 9, comprising accessing physical
memory spaces relating to any of the work queues by trans-
lating graphics virtual memory addresses into corresponding
physical memory addresses.

12. The method of claim 9, comprising notifying the appli-
cation upon successful completion of a workload by the
graphics hardware.

13. At least one non-transitory machine readable medium
having instructions stored therein that, in response to being
executed on a computing device, cause the computing device
to:

receive, at a graphics scheduler, work queues comprising

graphics tasks from an application executing on a central
processing unit (CPU);

receive, at a shim layer of the graphics scheduler, interrupts

from a graphics hardware configured to process the

5

15

20

18

graphics tasks received from the application, the graph-
ics hardware comprising graphics engines;

forward the interrupts from the shim layer to a graphics

microcontroller of the graphics scheduler; and
schedule the processing of the graphics tasks by the graph-
ics hardware in response to the interrupts by selecting
graphics engines to execute each of the graphics tasks
and writing to a runlist port register of the selected
graphics engines, wherein the scheduling is performed
via the graphics scheduler independently of the CPU.

14. The at least one non-transitory machine readable
medium of claim 13, wherein scheduling the processing of
the graphics tasks by the graphics hardware comprises deter-
mining an order of executing workloads for each of the graph-
ics engines.

15. The at least one non-transitory machine readable
medium of claim 13, wherein the instructions cause the com-
puting device to notify the application upon successful
completion of a workload by a corresponding graphics
engine.

